Engro 49.5MW Wind Energy Plant at Gharo

This week we went to visit Tenaga Wind Farm in Gharo being commissioned by Engro Pakistan. The project has a total capacity of producing 49.5 MW of electrical energy from 31 turbines rated at 1.6 MW each (one turbine out of the 31 produces 1.5 MW). The total cost of the project is $120 m and it is expected that this investment would be recovered in 5-6 years. The cost of a unit (kwhr) is going to Rs.15 as agreed with the Government of Pakistan.

The total energy produced annually would be 134 GWh which can be used to calculate the average power produced by the 31 wind turbines.

Power = Energy/Time = (134,000,000 kwhr)/(365 x 24 hours) = 15296 kW = 15.3 MW

That is the project would produce on average only 30.9 % (15.3 / 49.5) of its rated capacity. Furthermore the electrical energy needs to be converted to a level suitable to be supplied to the national grid. For this the electrical energy is converted from 690 Volts AC to 33,000 Volts AC. Lastly the project would be monitored and maintained by General Electric (GE) for two years as this is part of the turbine purchase contract. Three such projects are at various stages of installation in Gharo and seven such projects  are being undertaken in Jhimpir which is the preferred wind corridor in Sind due to quality/firmness of the soil there.

IMG_20160809_122456IMG_20160809_121150IMG_20160809_121135IMG_20160809_100304IMG_20160809_100255IMG_20160809_133128



Quaid-e-Azam Solar Park - The Reality

There have been conflicting claims about the capacity of Quaid-e-Azam Solar Park (QASP) in the media. While the the chief executive officer of the Quaid-i-Azam Solar Power (Pvt) Limited claims that the project is producing 12% more energy than expected, opposition parties are claiming that it is producing only 18 MW as compared to the advertised capacity of 100 MW. So what is the truth?

Energy vs Power

Actually both the parties are correct in some sense. While the project does have the capacity of producing 100 MW peak power, this only happens for a very short duration during the day (around noon time). When averaged over 24 hours the park is only producing about 20 MW. This can be easily calculated by assuming that the peak solar energy is available for 5 hours (typical for this region) and average it over 24 hours.

100 MW x (5/24) = 20.83 MW

We can also calculate the average power produced by the park by looking at the numbers provided by Quaid-i-Azam Solar Power (Pvt) Limited on its website. According to the website the park is producing 169 Gigawatt Hour as compared to the original estimates of 153 Gigawatt Hour per year (a 12% increase). But this is energy, how do we calculate power?

The answer is simple, divide the energy produced in a year by the number of hours in a year (365 x 24 = 8760 hours).

Average power produced = 169 GWH / 8760 hours = 19.29 MW

Cost of Production and Tariff

The good news is that there is very minimal cost of production of solar energy (there was an installation cost of Rs.13 billion plus there are about 700 security personal deployed for the security of 700 Chinese engineers working in the park). The tariff can be easily calculated by the revenue earned and the energy produced. According to QASP sources the revenue reached a peak of Rs. 320 million in September. Lets calculate the cost per unit from the total revenue earned in September and the energy produced in the month of September.

Cost per unit = Rs.320,000,000/(19,290kW * 24 hours * 30 days)= Rs. 23.04/unit.

So the QASP claim that it is costing a consumer Rs.12/unit is not true. The actual cost to a consumer is Rs.23.04/unit. Again the data has been taken from QASP website.

Environmental Impact

There is no doubt that there is going to be a negative impact on the environment. About 500 acres of desert have been taken over by QASP and this will definitely impact the biodiversity of the region. The total area dedicated to this project by Chief Minister of Punjab Mr. Shahbaz Sharif is 6500 acres (near Lal Sohanra National Park). Lastly there are vasts swaths of land in Balochistan which receive about 10-20% more Solar Irradiance than any location in Punjab and there are a number of new and existing Hydel projects that are crying for attention (case in point being Tarbela expansion which can yield additional 1400 MW of power).

Information taken from:

http://www.qasolar.com/

http://www.dawn.com/news/1217587/solar-park-producing-12pc-more-power-than-target

World Fossil Fuel Reserves

While alternate energies such as solar and wind are becoming increasingly important by the day, fossil fuels still have an important place in the energy mix and will continue to do so in foreseeable future. In this post we compare the reserves of three most important fossil fuels and their total value as per market rates at the moment amongst the top ten producers of the world.

Rank Country Oil (billion barrels) Gas (trillion cubic feet) Coal (billion tons) Value (trillion dollars)
1 Russia 87 1163 157 40.7
2 Iran 157 1187.3 35.3
3 Venezuela 297.6 196.4 479 34.9
4 Saudi Arabia 265.9 290.8 33
5 USA 35 300 237 28.5
6 Canada 173.9 70 6.58 20.2
7 Iraq 150 126.7 18
8 Qatar 23.9 885.1 16.4
9 UAE 97.8 215.1 13.8
10 China 17.3 109.3 115 13.2
Iran Pakistan Gas Pipeline

Iran Pakistan Gas Pipeline

From a regional perspective it is important to note that two of Pakistan's neighbors namely Iran and China have substantial reserves of oil, gas and coal. Iran is in fact number one as far as proven reserves of natural gas are concerned and fourth in the world in oil reserves. However, large production of fossil fuels has been hampered by the sanctions imposed on Iran by USA and EU.

It is expected that once these sanctions are removed Iran will have a greater role to play in the international market of fossil fuels. It must also be noted that work is under progress on the Pak-Iran gas pipeline which will bring natural gas from Iran to the cities of Pakistan. Iran has completed most of the work on its side of the border but work is slow on the Pakistani side.

Source: Business Insider

Business Insider used data from British Petroleum’s 2013 statistical review of world energy and calculated the countries with the largest reserves in three key fossil fuel categories—oil, coal, and natural gas.

BI then calculated the total value of the reserves by using current global prices.

Solar Panels from Used Batteries

Researchers at Massachusetts Institute of Technology (MIT) have demonstrated a procedure to convert used lead acid batteries from automobiles into solar panels. A single battery can be used to produce solar panels for as many as 30 homes. It must be noted that with the advancement in battery technology it is expected that 200 million lead acid batteries would be retired soon from USA alone. This development shows us a way forward to reusing a huge resource of lead that would be otherwise go to dumping sites.

A material that is making this possible is organolead halide perovskite. A layer of perovskite only 1/2 a micrometer thick is enough to produce a solar panel and does not require a very high manufacturing process like for other silicon based solar panels. One might think that this is another experimental material that achieves an efficiency in single digits. But this is hardly the case. In just a few years of research perovskite based solar cells have achieved efficiency of more than 19%. It is expected by the end of 2014 the efficiency would cross the psychological barrier of 20%.

1 Battery Provides Solar Panels for 30 Homes

1 Battery Provides Solar Panels for 30 Homes

Perovskite (source: Wikipedia)  is a calcium titanium oxide mineral species composed of calcium titanate, with the chemical formula CaTiO3. The mineral was discovered in the Ural Mountains of Russia by Gustav Rose in 1839 and is named after Russian mineralogist Lev Perovski (1792–1856).

It lends its name to the class of compounds which have the same type of crystal structure as CaTiO3 known as the perovskite structure. The perovskite crystal structure was first described by Victor Goldschmidt in 1926, in his work on tolerance factors. The crystal structure was later published in 1945 from X-ray diffraction data on barium titanate by Helen Dick Megaw.

Efficiency of a solar panel is the ratio of the electrical energy produced to the incident solar radiation e.g. a 20% efficient solar panel of 1 m2 area would produce 200 W when the incident solar radiation reaches a level of 1000 W/m2.

First Solar Likely to Invest in Pakistan

First Solar, America's Solar giant is poised to invest in Pakistan's Alternate Energy sector after starting a 45 MW Solar project in Indian state of Telangana. First Solar has a worldwide installed capacity of 8 GW and was ranked no. 1 in Forbes list of 25 fastest growing technology companies in USA. The 45 MW project to be launched in Telangana will be operational by May of 2015 and would sell electricity at a rate of $0.106/kWh. India currently has an installed Solar capacity of 2900 MW which will be ramped up to 9000 MW by 2017.

According to some estimates Pakistan is facing an energy shortfall of around 4600 MW and government is quite keen to start new projects, be it Solar, Hydel or Thermal. Pakistan has set a target of 5% of energy to be generated from Alternate Energies by 2030. This is quite a conservative target and might actually be achieved before 2030, especially with the new initiatives such as the 1000 MW Quaid-e-Azam Solar Park to be operational by end 0f 2016. It is hoped that with a stable government and sustained policies in the coming years the Solar Energy sector would prosper and Pakistan would achieve its targets much before 2030.

Solar Park

Solar Park

First Solar Sets New CdTe Solar Cell Efficiency Record

First Solar Inc. an American manufacturer of thin film Photovoltaic (PV) modules announced that it has achieved a record efficiency of 21% for its CdTe Solar Cells. The previous best achieved by the company was 20.4% in Feb of 2014. The record has been accepted by US Department of Energy's National Renewable Energy Laboratory (NREL) and included in "Best Research Cell Efficiency" reference chart. First solar aims to achieve an efficiency of 22% by 2015.

Thin Film Solar Panels

Thin Film Solar Panels

Note: Efficiency of a Solar Cell is the ratio of the Electrical Energy produced to the incident Solar Energy e.g. if the incident Solar Radiation is 1000 W/m2 the Electrical Energy produced by a 21% efficient Solar Panel of 1 m2 area is 210 W (neglecting the various losses that might be encountered).

Government Imposes 32.5% Tax on Solar

According to Finance Act 2014, the federal government has amended SRO 575 2006-07 and imposed a tax of 32.5% on import of Solar Panels. It must be noted that Solar Panels were placed in a special category with no tax since 2006. This was done to encourage the adoption of this Alternate Energy in the country. The government instead of taking steps to promote Solar Energy has taken the worst possible decision, at a time when the country is facing an acute energy crisis. The only possible explanation for this action is that the government intends to encourage local production of Solar Panels, which at the moment is minimal. What is troubling is that the Alternate Energy Development Board (AEDB) which is tasked with increasing the Alternate Energy contribution in the country to about 5% by 2030 was not even consulted.

Solar Panel

The breakdown of the imposed tax is as follows.

General Sales Tax 17%

Import Duty 5%

Commercial Importer 3%

Income Tax on the Import 5.5%

Hardest hit are the importers who had imported Solar Panels in bulk and now have to pay taxes amounting in millions of rupees (5-6 million per container). According to sources there are about 60 to 70 containers at the port which are waiting for clearance by customs. Also suffering are Solar solution providers who do not have enough equipment now to fulfill their commitments. It must be noted that energy demand reaches its peak in summer months and this is the time when Solar businesses make their profits. Also to be hit is the agriculture sector where Solar Pumps have become quite popular in recent times.

The government has recently shown considerable interest in Solar technology with the launch of Quaid-e-Azam Solar Park in Bahawalpur. Previously, the Gillani government had also taken some steps to promote Alternate Energies in the country, such as starting Wind Energy projects in Jhimpir. It is hoped that better sense would prevail and the government would revisit the Fiance Act 2014 which has created this mess!

Note: Since this article was published on July 29, 2014 there has been another article that totally refutes the imposition of any additional taxes on solar equipment. According to this article titled Demystifying the Tax on Solar Panels "if an importer verified the import (through the Engineering Development Board) as a unique product not manufactured or available in Pakistan, the importer would not have to pay custom tax". The news item about imposition of tax may have been untrue but it did have some effect as the 60-70 containers stuck at Karachi were immediately released.

Alternate Energy Development Board (AEDB)

Alternate Energy Development Board is a Government of Pakistan controlled institution that is tasked with increasing the alternate energy contribution of the country to about 5% by 2030. According to the AEDB Act of 25th May 2010 following are the functions of the AEDB Board.

(a) To develop national strategy, policies and plans for utilization of alternate and renewable energy resources to achieve the targets approved by the Federal Government in consultation with the Board.

(b) To act as a forum for evaluating, monitoring and certification of alternate or renewable energy projects and products.

(c) To act as a coordinating agency for commercial application of alternate or renewable energy.

(d) To facilitate energy generation through alternate or renewable energy resources by:

(i) Acting as a one window facility for establishing, promoting and facilitating alternate or renewable energy projects based on wind, solar, micro-hydel, fuel cells, tidal, ocean, biogas, biomass etc.

(ii) Setting up alternate and renewable energy projects on it's own or through joint ventures or partnership with public or private entities in order to create awareness and motivation of the need to take such initiatives for the benefit of general public as well as by evaluating concept notes and technologies from technical and financial perspective.

(iii) Conducting feasibility studies and surveys to identify opportunities for power generation and other applications through alternate and renewable energy resources.

(iv) Undertaking technical, financial and economic evaluation of the alternate and renewable energy proposals as well as providing assistance in filing of required licensing applications and tariff petitions to NEPRA established under the Regulation of Generation Transmission and Distribution of Electric Power Act, 1997.

(v) Interacting and coordinating with national and international agencies for promotion and development of alternate energy.

(vi) Assisting the development and implementation of plans with concerned authorities and provincial governments and special areas for off grid electrification of rural areas.

(vii) Making legislative proposals to enforce use and installation of equipment utilizing renewable energy.

Pakistan Council of Renewable Energy Technologies (PCRET)

Pakistan did realize the potential of Alternate Energies quite early and National Institute of Silicon Technology (NIST) was formed in 1981 to conduct research in the area of Solar Energy. Later on Pakistan Council for Appropriate Technology (PCAT) was formed in 1985. These two organizations were merged together under the umbrella of Pakistan Council of Renewable Energy Technologies (PCRET) in 2001. The government of Pakistan also formed the Alternate Energy Development Board (AEDB) in 2003. Although these organizations have been working in the Alternate Energy sector for more than 30 years but there are not many achievements to be proud of. Some pilot projects have been initiated by PCRET and AEDB in remote parts of the country but there is no holistic approach to overcome the energy crisis besetting the country (one interesting initiative that has been taken by the Government of Pakistan in recent times is the Quaid-e-Azam Solar Park in Bahawalpur).

One interesting initiative undertaken by PCRET is indigenous development of 3rd Generation Solar Cells using Nanotechnology. However,the Solar Cells developed using this technique have very low efficiency (around 1%) as compared to international standards (around 10%). Nonetheless, this is an important step towards indigenous development and it is hoped that the efficiency of these Solar Cells can be improved with time so that they are of some practical use. Some of the products developed by PCRET in the area of Solar Thermal are Solar Desalination Plant, Solar Water Heater, Solar Cooker and Dehydrator.

As per PCRET website the total installed capacities of various Alternate Energy technologies in Pakistan are:

1. Installed 538 Microhydel Power Plants  (5-50 KW capacity) with total capacity of 7.8 MW, 70,000 houses electrified.

2. Installed 155 small wind turbines (0.5 KW to 10 KW) with total capacity of 161 KW in Sindh and Balochistan, electrifying 1560 houses and 9-coast guard check posts.

3. Installed 300 Solar PV systems with total capacity of 100 KW electrifying 500 houses, mosques, schools and street lights.

4. Installed 4000 Biogas Plants (size 3&5M3/day, producing 18000 M3/day).

5. Developed 6-models of efficient smokeless cook stoves for cooking and space heating.

6. 100,000 mud stoves have been built in rural houses; saving 36500 tons of fuel wood per year.

7. Installed 21 solar dryers with total capacity of processing 5230 Kg of fruit per day.